Tableau Cycling and Catalan Numbers
نویسندگان
چکیده
We develop two combinatorial proofs of the fact that certain Young tableaux are counted by the Catalan numbers. The setting is a larger class of tableaux where labels increase along rows without attention to whether labels increase down columns. We define a new operation called tableau cycling. It is used to duplicate the reflection argument attributed to André in the tableaux setting, and also to prove a tableaux analog of the Chung-Feller theorem.
منابع مشابه
Cyclic sieving of increasing tableaux and small Schröder paths
An increasing tableau is a semistandard tableau with strictly increasing rows and columns. It is well known that the Catalan numbers enumerate both rectangular standard Young tableaux of two rows and also Dyck paths. We generalize this to a bijection between rectangular 2-row increasing tableaux and small Schröder paths. Using the jeu de taquin for increasing tableaux of [Thomas–Yong ’09], we t...
متن کاملSome Properties of the Fuss–catalan Numbers
In the paper, the authors express the Fuss–Catalan numbers as several forms in terms of the Catalan–Qi function, find some analytic properties, including the monotonicity, logarithmic convexity, complete monotonicity, and minimality, of the Fuss–Catalan numbers, and derive a double inequality for bounding the Fuss–Catalan numbers.
متن کاملThe Super Patalan Numbers
We introduce the super Patalan numbers, a generalization of the super Catalan numbers in the sense of Gessel, and prove a number of properties analogous to those of the super Catalan numbers. The super Patalan numbers generalize the super Catalan numbers similarly to how the Patalan numbers generalize the Catalan numbers.
متن کاملParametric Catalan Numbers and Catalan Triangles
Here presented a generalization of Catalan numbers and Catalan triangles associated with two parameters based on the sequence characterization of Bell-type Riordan arrays. Among the generalized Catalan numbers, a class of large generalized Catalan numbers and a class of small generalized Catalan numbers are defined, which can be considered as an extension of large Schröder numbers and small Sch...
متن کاملStaircase tilings and k-Catalan structures
Many interesting combinatorial objects are enumerated by the k-Catalan numbers, one possible generalization of the Catalan numbers. We will present a new combinatorial object that is enumerated by the k-Catalan numbers, staircase tilings. We give a bijection between staircase tilings and k-good paths, and between k-good paths and k-ary trees. In addition, we enumerate k-ary paths according to D...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007